If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-31=0
a = 1; b = 8; c = -31;
Δ = b2-4ac
Δ = 82-4·1·(-31)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{47}}{2*1}=\frac{-8-2\sqrt{47}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{47}}{2*1}=\frac{-8+2\sqrt{47}}{2} $
| 35x+98=7x^2 | | 385.71=40×8.25+12.38x | | -6x-101=-14x+131 | | x+3/5-3/5=23/5-3/5 | | 2/3x-4/3=3/16 | | 0=4.9x^2+34.64x | | 6z-7=2z-2@ | | 3x+-50=100 | | 11.2t=-2.9t-19.74 | | a/3-10=3/2 | | 7(1-6b)=-28-7b | | 5r+2=6r | | -32+16=-6x+10x | | b-8+8b=12 | | 3(2x-8)+6(x+1)=2x+8x | | 18-3u=-17+2u | | x+3/5-1/10=43/5-1/10 | | 2=2(p+1)-8 | | 540=300+r300 | | 21=5/6c-4 | | 19+18+n=-5n-17 | | r-9=-13+r | | 6p+5+7p+3=12p+4 | | -40g+5g=12 | | 5t-3t-t+2=9 | | 9x^2=4=-12x | | Y=-64x+169 | | 3x+2=5(x-6) | | 4+h=-3 | | -390+x=-56 | | -(g+-5)+-15=-3 | | -35g=12 |